Catalyst advance could lead to economical fuel cells

Illustration of reaction with iron, nitrogen, oxygen, water, porous carbon resulting in single iron atoms.
Schematic illustration of single-atom catalyst anchored on porous carbon.

By Tina Hilding, Voiland College of Engineering and Architecture

PULLMAN, Wash. – Researchers at Washington State University have developed a new way to make low-cost, single-atom catalysts for fuel cells — an advance that could make important clean energy technology more economically viable.

Their work is published in the Advanced Energy Materials journal.

Hydrogen fuel cells are critical for the clean energy economy as they are more than two times as efficient at creating electricity than polluting combustion engines. Their only waste product is water.

However, the high price of the platinum-based catalysts that are used for the chemical reaction in fuel cells significantly hinders their commercialization. Instead of the rare platinum, researchers would like to use nonprecious metals, such as iron or cobalt. But reactions with these abundantly available metals tend to stop working after a short time.

“Low-cost catalysts with high activity and stability are critical for the commercialization of the fuel cells.” said Qiurong Shi, postdoctoral researcher in the School of Mechanical and Materials Engineering (MME) and a co-first author on the paper.

Recently, researchers have developed single-atom catalysts that work as well in the laboratory setting as using precious metals. The researchers have been able to improve the stability and activity of the nonprecious metals by working with them at the nanoscale as single-atom catalysts.

In this new work, the WSU research team, led by Yuehe Lin, an MME professor, used iron or cobalt salts and the small molecule glucosamine as precursors in a straightforward high temperature process to create the single-atom catalysts. The process can significantly lower the cost of the catalysts and could be easily scaled up for production.

The iron-carbon catalysts they developed were more stable than commercial platinum catalysts. They also maintained good activity and didn’t become contaminated, which is often a problem with common metals.

“This process has many advantages,” said Chengzhou Zhu, a first author on the paper who developed the high temperature process. “It makes large-scale production feasible, and it allows us to increase the number and boost the reactivity of active sites on the catalyst.”

Lin’s group collaborated on the project with Scott Beckman, an MME associate professor at WSU, as well as with researchers at Advanced Photon Source at Argonne National Laboratory and Brookhaven National Laboratory for materials characterization.

“The advanced materials characterization user facility at the national laboratories revealed the single-atom sites and active moieties of the catalysts, which led to the better design of the catalysts,” said Lin.

The work was funded by a WSU startup grant and by the U.S. Department of Energy (DOE grant numbers: Brookhaven National Laboratory, DESC0012704; Argonne National Laboratory, DE-AC02-06CH11357).

 

Contact:

  • Yuehe Lin, professor, School of Mechanical and Materials Engineering, 509-335-8523, lin@wsu.edu
  • Tina Hilding, Voiland College of Engineering and Architecture communications director, (509) 335-5095, thilding@wsu.edu

Next Story

Students design outdoor story walk for Keller schools

A group of WSU landscape architecture students is gaining hands‑on experience by designing an outdoor classroom with members of the Confederated Tribes of the Colville Indian Reservation.

Recent News

E-tongue can detect white wine spoilage before humans can

While bearing little physical resemblance to its namesake, the strand-like sensory probes of the “e-tongue” still outperformed human senses when detecting contaminated wine in a recent WSU-led study.

Provost selection process ongoing

WSU expects to name its next provost before the end of April. President Kirk Schulz is actively considering two finalists, with feedback provided by the university community being a key factor in the decision.

Employee Assistance Program hosts special sessions, April 17

Washington State Employee Assistance Program Director Jennifer Nguyen will lead two discussions tomorrow on the topics of change and personal wellbeing. Both presentations will be livestreamed.