How plastic waste moves in the environment

Illustration modeling the movement of synthetic fibers.
Graphic of the model. The blue ovals represent gravel grains and the bright colored objects represent synthetic fibers.

By Siddharth Vodnala, Voiland College of Engineering and Architecture

PULLMAN, Wash. – A Washington State University researcher for the first time has modeled how microplastic fibers move through the environment.

The work, published in the journal Advances in Water Resources, could someday help communities better understand and reduce plastics pollution, which is a growing problem around the world.

Millions of tons of plastic waste in tiny microscopic pieces are bobbing around the world’s oceans and are finding their way into soil, sediments and freshwater. Plastic debris comes from many sources including synthetic clothing fibers, cosmetics, packaging and industrial processes. These plastic bits often end up in the oceans, harming the marine life that eats them.

Researchers have studied and measured microplastics in a variety of environments, but Nick Engdahl, an assistant professor in the Department of Civil and Environmental Engineering, is the first to model how the synthetic fibers move.

Closeup of Engdahl.
Nick Engdahl, WSU assistant professor in the Department of Civil and Environmental Engineering

“I wanted to know whether they keep moving and spreading or if they just accumulate in one place,” said Engdahl, who has studied the movement of a variety of contaminants in the environment.

He used a novel physics-based approach to simulate the movement of microplastic fibers, specifically. These synthetic fibers in clothing are created during their manufacturing process.

“Every time you walk or rub against something your clothes are shedding fibers,” said Engdahl.

The microfibers, which are mainly released when clothes are washed, end up in wastewater plants, where a significant proportion pass through water filtration systems. Even the ones that are filtered end up in the sewage sludge that can be applied to farm soils as fertilizer or dumped in landfills.

Engdahl found that the length of the fibers and the speed of water that they’re floating in determined whether they settle in soil or continue moving in the environment. He also found that the movement of shorter microplastic fibers was complex, and that they moved faster than dissolved substances in the water.

Engdahl is working to verify and refine his model against direct observations of microplastic fiber movement in a lab. He also plans to measure the fibers in a wastewater treatment facility.

“The more data I can get from the real world, the more accurately I will be able to see if these things move around or stay put and pile up,” he said. “This will help us more accurately measure their environmental impact, which is largely unknown right now.”

Next Story

WSU offers expanded equine reproductive care and advanced techniques

The expanded service, which will take advantage of a newly repurposed facility and pasture on Terre View Drive, will be dedicated to clients seeking equine reproductive care and will nearly double onboarding space for mares, foals, and stallions at the hospital.

Recent News

Tour crop research for the drylands at WSU’s 106th Lind Field Day, June 13

WSU invites grain producers and partners to meet scientists at the Lind Dryland Research Station and learn about current research in one of the nation’s driest growing regions at the 106th annual Lind Field Day, Thursday, June 13, 2024.

Student receives NASA graduate fellowship

The fellowship will provide WSU graduate student Ian Wells with up to five years of support for early-stage space technology research as well as summer internships at one of NASA’s space centers.

Classified staff receiving general salary increase

Non-represented classified staff will receive a 3% general salary increase effective July 1. This adjustment was funded in the State of Washington’s 2023–25 operating budget.