WSU Cougar Head Logo Washington State University
WSU Insider
News and Information for Faculty, Staff, and the WSU Community

Biomarkers in fathers’ sperm linked to offspring autism

Son sitting on father's shoulders.

PULLMAN, Wash. – Biomarkers in human sperm have been identified that can indicate a propensity to father children with autism spectrum disorder. These biomarkers are epigenetic, meaning they involve changes to molecular factors that regulate genome activity such as gene expression independent of DNA sequence, and can be passed down to future generations.

In a study published in the journal Clinical Epigenetics on Jan. 7, researchers identified a set of genomic features, called DNA methylation regions, in sperm samples from men who were known to have autistic children. Then in a set of blind tests, the researchers were able to use the presence of these features to determine whether other men had fathered autistic children with 90% accuracy.

“We can now potentially use this to assess whether a man is going to pass autism on to his children,” said Michael Skinner, professor of biological sciences at Washington State University and corresponding author on the study. “It is also a major step toward identifying what factors might promote autism.”

Skinner standing in biological laboratory.
Skinner in his laboratory at WSU. (Photo by WSU Photo Services)

Incidence of autism spectrum disorder has increased dramatically over time from 1 in 5,000 people in 1975 to 1 in 68 in 2014. While improved diagnosis and awareness can account for some of that change, many researchers believe the recent increase over the last two decades may be due to environmental and molecular factors. Previous studies have also shown that children can inherit the disorder from their parents, and that fathers are more often linked to autism transmission than mothers.

In the current study, researchers from WSU, Valencia Clinical Research Center and Valencia University in Spain, looked at sperm epigenetics, the molecular processes that affect gene expression, in two groups of men: 13 who had fathered sons with autism, and 13 who had children without the disorder. They looked specifically at DNA methylation, a chemical modification that happens when a methyl group attaches to a DNA strand and can turn genes on or off.

The researchers identified 805 different DNA methylation regions that can potentially act as an epigenetic biomarker for susceptibility to father offspring with autism. They tested their findings by attempting to identify fathers who did or did not have autistic children just from their sperm samples. In blind tests of 18 men, they correctly identified all the fathers, except for two false negatives, an accuracy rate of about 90%.

More work and expanded trials need to be done to develop the study’s findings into a potential medical tool, and Skinner and his colleagues are working on a more extensive study involving more than 100 men.

With further research, this biomarker could also be used to trace how the epigenetic changes occurred in the first place, said Skinner.

“We found out years ago that environmental factors can alter the germline, the sperm or the egg, epigenetics,” said Skinner. “With this tool we could do larger population-based studies to see what kinds of environmental factors may induce these types with epigenetic changes.”

Media contacts:

  • Michael Skinner, Washington State University School of Biological Sciences, 509 335 1524, skinner@wsu.edu
  • Sara Zaske, WSU News and Media Relations, 509-335-4846, sara.zaske@wsu.edu

Next Story

Bee center filling up, honey extractor moves in

Honey will soon be made at WSU’s Honey Bee & Pollinator Research, Extension, and Education Facility in Othello after a large equipment move.

Recent News

Bee center filling up, honey extractor moves in

Honey will soon be made at WSU’s Honey Bee & Pollinator Research, Extension, and Education Facility in Othello after a large equipment move.

Tribal connection inspires efforts to save salmon

Studying toxic runoff to help save iconic salmon species, Stephanie Blair draws on science as well as the knowledge and connections of her Native American community.

Insider will return Nov. 29

WSU Insider is taking a break to join with the rest of the university community in celebrating the Thanksgiving holiday. We’ll be back the morning of Nov. 29 with fresh posts for the WSU community.

Scouting for a forgotten few

WSU historian Ryan Booth sheds light on the largely forgotten history of the Northern Cheyenne and White Mountain Apache who served as scouts for the U.S. Army from 1866–1947.

Find More News

Subscribe for more updates