Disposable masks could be used to make more durable concrete

Closeup of a scientist holding a mask and a beaker.
The WSU researchers developed a process to fabricate tiny mask fibers, ranging from five to 30 millimeters in length, and then added them to cement concrete to strengthen it and to prevent its cracking.

PULLMAN, Wash. –  With the pervasive single-use masks during the pandemic now presenting an environmental problem, researchers have demonstrated the idea of incorporating old masks into a cement mixture to create stronger, more durable concrete. 

In a paper published in the journal, Materials Letters, a Washington State University research team showed that the mixture using mask materials was 47% stronger than commonly used cement after a month of curing. 

 “These waste masks actually could be a valuable commodity if you process them properly,” said Xianming Shi, professor and interim chair of the Department of Civil and Environmental Engineering and the corresponding author on the paper. “I’m always looking out for waste streams, and my first reaction is ‘how do I turn that into something usable in concrete or asphalt?’”

Production of cement is a carbon-intensive process, responsible for as much as 8% of carbon emissions worldwide. Microfibers are already sometimes added to cement concrete to strengthen it, but they’re expensive. The microfiber-reinforced concrete can potentially reduce the amount of cement needed for a project or make the concrete last longer, saving carbon emissions as well as money for builders and owners.

Made of a polypropylene or polyester fabric where it contacts the skin and an ultra-fine polypropylene fiber for the filtering layers, medical masks have fibers that can be useful for the concrete industry. If they are not reused, disposable masks can remain in the environment for decades and pose a risk for the ecosystem. 

“This work showcases one technology to divert the used masks from the waste stream to a high-value application,” Shi said. 

A gloved hand holding a piece of a disposable face mask and a separate pile of tiny mask fibers.
The WSU researchers developed a process to fabricate tiny mask fibers, ranging from five to 30 millimeters in length, and then added them to cement concrete to strengthen it and to prevent its cracking.

In their proof-of-concept work, the researchers developed a process to fabricate tiny mask fibers, ranging from five to 30 millimeters in length, and then added them to cement concrete to strengthen it and to prevent its cracking. For their testing, they removed the metal and cotton loops from the masks, cut them up and incorporated them into ordinary Portland cement, the most common type of cement used around the world and the basic ingredient for concrete, mortar and grout.  

They mixed the mask microfibers into a solution of graphene oxide before adding the mixture to cement paste. The graphene oxide provides ultrathin layers that strongly adhere to the fiber surfaces. Such mask microfibers absorb or dissipate the fracture energy that would contribute to tiny cracks in the concrete. Without the fibers, these microscopic cracks would eventually lead to wider cracks and the material’s failure. 

The researchers are conducting more studies to test their idea that the graphene oxide-treated microfibers could also improve the durability of the concrete and protect it from frost damage and from deicing chemicals that are used on roadways. They also envision applying this technology to the recycling of other polymer materials, such as discarded clothing, to incentivize the collection of such waste.

Zhipeng Li, a graduate student in WSU’s Department of Civil and Environmental Engineering, led the work, which was funded through the U.S. Department of Transportation’s National Center for Transportation Infrastructure Durability and Life Extension.

Media Contacts

Next Story

Students design outdoor story walk for Keller schools

A group of WSU landscape architecture students is gaining hands‑on experience by designing an outdoor classroom with members of the Confederated Tribes of the Colville Indian Reservation.

Recent News

E-tongue can detect white wine spoilage before humans can

While bearing little physical resemblance to its namesake, the strand-like sensory probes of the “e-tongue” still outperformed human senses when detecting contaminated wine in a recent WSU-led study.

Provost selection process ongoing

WSU expects to name its next provost before the end of April. President Kirk Schulz is actively considering two finalists, with feedback provided by the university community being a key factor in the decision.

Employee Assistance Program hosts special sessions, April 17

Washington State Employee Assistance Program Director Jennifer Nguyen will lead two discussions tomorrow on the topics of change and personal wellbeing. Both presentations will be livestreamed.