Re-energizing radiochemistry: buck the trend, lead the way

The Palouse might not have a lot in common with the rolling hills of Tuscany, but just as Florence, Italy, was the birthplace of the Renaissance, Pullman is becoming home to the rebirth of radiochemistry.

Today there are seven graduate students in radiochemistry at WSU, up from four in 2002, making it one of the largest programs in the country. It is second only to the University of Missouri, Columbia, and gaining fast. Next year, depending on funding, there may be as many as 15 graduate students in WSU’s program.

Nationally, enrollment in radiochemistry programs — the chemistry of radioactive elements — peaked about 30 years ago, when about 35 chemistry doctorates were awarded annually to graduates who had specialized in radiochemistry. Since then, however, enrollment has declined dramatically and most programs have folded altogether. Last year fewer than 10 graduate degrees were conferred on radiochemists nationwide.

Ahead of the curve
But WSU is either bucking the trend or just ahead of the curve. When Sue Clark, chair of the department of chemistry, joined the WSU faculty as an environmental chemist in 1996, only one of her colleagues, Roy Filby, was a radiochemist, and he has since retired. Now there are two more — professor Ken Nash and assistant professor Paul Benny.

Working with the department of chemistry, the College of Sciences and the Nuclear Radiation Center, Clark was able to hire them, she said, because of grants from the Department of Energy (DOE). While WSU is paying the faculty salaries, the DOE funding allowed Nash and Benny to get their labs up and running so they can compete for other grants.

Since joining WSU, Clark has generated $9 million in extramural funding, but she was particularly excited about the funding for new faculty.“I was looking for something that would be enduring beyond that initial investment, and the best way to achieve that is to invest in new faculty,” she said, and she’s already watching the graduate program grow.

“She’s a good recruiter,” said Carrie Shepler, a fifth-year graduate student in Clark’s lab. Shepler said she was considering a career in nuclear medicine until she attended the American Chemical Society’s summer school in nuclear and radiochemistry sponsored by the DOE. There she met Clark, who has since become director of the program, and changed her career path to focus on environmental radiochemistry.

“I learned there was a lot more to radiochemistry than nuclear medicine,” Shepler said.

Nash spent 25 years as a top research scientist at Argonne National Laboratories (Chicago) and the U.S. Geological Survey (Denver) prior to joining the faculty at WSU. Like Clark, he is determined to open the world of radiochemistry to a new generation of scientists, most effectively by including it in general chemistry. That’s when you have to reach students, he said, to get them excited about the possibilities of a career in radiochemistry.

Nuclear energy and cancer
Over the past 30 years, work with radioactive elements has led to great advances in medical diagnosis, cancer treatment, food production, pest eradication, materials development and energy production, even while support for radiochemistry programs has dwindled. But, without young scientists to take over when senior scientists retire, that progress might stop or move overseas.

And, said Nash, whose own research with actinides (the heaviest metals) and lanthanides (the so-called rare earth metals) focuses on safe and efficient disposal of nuclear waste, the United States still has problems with nuclear waste disposal to deal with, as well as the need for a home-grown source of energy.

“The energy supply problem in this country hasn’t been solved,” he said. “It’s been postponed.” Along with making nuclear power plants more efficient, safe and clean, Nash said, radiochemistry research is crucial to the creation of a hydrogen economy. Nash recently received two new grants for $600,000 from DOE for his work.

The DOE’s National Nuclear Security Administration is trying to boost radiochemistry programs in the United States. According to a December 2004 newsletter, “Preserving scientific know-how (replete with the potential for R&D and innovation) in this crucial area should be a national security issue.” The NNSA believes radiochemistry is “the key to a nuclear ‘CSI toolkit,’ offering clues to track would-be nuclear proliferators.”

Another federal agency concerned about radiochemistry education is the National Institutes of Health. Approximately one-third of all medical diagnostic procedures conducted in the U.S. use radiation.

Benny, a radiochemist from the University of Zurich and University of Missouri, joined the faculty in 2004 and is studying 99Tc to diagnose and treat cancer cells. For prostate cancer, Benny is interested in developing targeted radiopharmaceuticals that selectively bind to androgen, unique to the cancerous cells, and then kill only those cells.

Next Story

Recent News

Smithsonian National Zoo nutritionist to deliver Halver Lecture tomorrow

Mike Maslanka solves diet-related riddles for exotic and threatened species. He will reflect on some of his career highlights during the Halver Lecture in Comparative Nutrition, 5 p.m. Feb. 27 in Pullman.

AI research supports health equity in rural Washington

WSU sociologist Anna Zamora-Kapoor is studying how artificial intelligence and machine learning could help improve cancer survival outcomes among the Pacific Northwest’s rural Hispanic population.

Sustainability Task Force seeking community ideas

The new task force was formed as part of a broader effort to ensure the university is at the forefront of environmentally-conscious efforts in higher education.