WSU Cougar Head Logo Washington State University
WSU Insider
News and Information for Faculty, Staff, and the WSU Community

New biojet fuel could be a viable alternative to fossil fuel

Initial testing of specific lignin molecules has shown their potential to meet high-performance characteristics for jet engines, while providing a higher fuel density that could help planes fly farther on less fuel.

RICHLAND, Wash. – A Washington State University Tri-Cities researcher is producing and testing a group of hydrocarbon molecules made from lignin, a waste material from biofuel production, as a new biojet fuel that could replace petroleum-based fuels and lead to greater performance and reduced emissions.

Bin Yang, associate professor of biological systems engineering with the Tri-Cities-based Bioproducts, Sciences and Engineering Laboratory, is working with colleagues from the University of Dayton, Phonon Energy, Inc., Polykala Technologies LLC, and Mercurious Biorefining, Inc, on the project. The team recently received a $100,000 grant from the Joint Center for Aerospace Technology Innovation (JCATI) to conduct first-round testing on viability of molecules known as mono-, di- and tricycloparaffins, which they can source from lignin.

Lignin is a group of polymers that give plants their rigidity, and are a common wood byproduct in the biofuel creation process.

Initial testing of specific lignin molecules has shown their potential to meet high-performance characteristics for jet engines, while providing a higher fuel density that could help planes fly farther on less fuel.

This research, published in the journal Fuel, could result in high-efficiency jet fuel with favorable energy content, energy density, low emissions rates, and high-performance characteristics, meeting drop-in specifications immediately for jet aircraft.

Closeup of Bin Yang
Bin Yang

“Reduction of emissions is critical for the future of the aviation industry,” Yang said. “With the testing of these molecules, we not only show increased efficiency, but also decreased emissions. We are now working on the hard data to support these findings.”

One of the challenges in making the switch to bio-based fuels is that biofuels are often more expensive compared to petroleum-based sources, driving up the cost of jet fuel, Yang said.

However, lignin-based jet fuel is different from existing petroleum-based jet fuel in structure, function, and performance. It could offer novel functionality and improved performance as the fuel of a sustainable future.

Over the next year, Yang and his team will test the three variations of the molecules to identify which is the most efficient and practical for a completely bio-based jet fuel.

“In the end, I expect to have a formula that will meet requirements for jet fuel,” Yang said. “With additional resources, we can continue the tests and potentially develop a fuel that ushers in the future of sustainable air travel.”

Next Story

Recent News

WSU Core-to-Career program announces members of third cohort

Twenty-one Washington State University faculty have been named as the newest members of the Core-to-Career professional development program that impacts undergradutes’ career readiness.

Sharing American political and judicial expertise overseas

Recipient of a Fulbright Senior Specialist award for a three-week visit to Slovakia, WSU’s Cornell Clayton held a series of lectures for graduate and undergraduate students focusing on contemporary American politics.

College of Education appoints Eric Johnson as associate dean

Eric Johnson, an English language learners professor, will begin his two-year term on Aug. 16 and will focus heavily on faculty and staff professional development aimed at fostering an inclusive and equitable educational environment within the college.

WSU lab joins network identifying new pathogens

As part of the $1.7 billion Pathogen Genomics Center of Excellence, the Washington Animal Disease Diagnostic Laboratory will play a key role preventing the spread of disease-causing pathogens, including new COVID-19 variants.

Find More News

Subscribe for more updates