MME seminar series welcomes Dr. Behcet Acikmese

October 26 @ 11 a.m. – noon
Dr. Behcet Acikmese
ETRL 101

William E. Boeing Department of Aeronautics and Astronautics & Department of Electrical Engineering
University of Washington, Seattle
Real-time optimization for Guidance and Control of Autonomous Aerospace Vehicles

Refreshments served in ETRL 119 at 10:30 am

Everyone is encouraged to attend!

Abstract

Many future aerospace engineering applications will require dramatic increases in our existing autonomous control capabilities. These include robotic sample return missions to planets, comets, and asteroids, formation flying spacecraft applications, applications utilizing swarms of autonomous agents, unmanned aerial, ground, and underwater vehicles, and autonomous commercial robotic applications. A key control challenge for many autonomous systems is to achieve the performance goals safely with  minimal resource use in the presence of mission constraints and uncertainties. In principle these problems can be formulated and solved as optimization problems. The challenge is solving them reliably onboard the autonomous system in real time.

Our research has provided new analytical results that enabled the formulation of many autonomous control problems in a convex optimization framework, i.e., convexification of the control problem. The main mathematical theory used in achieving convexification is the duality theory of optimization. Duality theory manifests itself as Pontryagin’s Maximum Principle in infinite  dimensional optimization problems and as KKT conditions infinite dimensional parameter optimization problems. Both theories were instrumental in our developments. Our analytical framework also allowed the computation of the precise bounds of performance for a control system in term of constrained controllability/reachability sets. This proved to be an important step in rigorous V&V of the resulting control decision making algorithms.

This seminar introduces several real-world aerospace applications, where this approach provided dramatic performance improvements over the heritage technologies. An important application is the fuel optimal control for planetary soft landing, whose complete solution has been an open problem since the Apollo Moon landings of 1960s. We developed a novel “lossless convexification” method, which enables the next generation planetary missions, such as Mars robotic sample return and manned missions. Another application is in Markov chain synthesis with “safety” constraints, which enabled the development of new decentralized coordination and control methods for spacecraft swarms.

Biography 

Behcet Acıkmese is a faculty in Department of Aeronautics and Astronautics and an adjunct faculty in Department of Electrical Engineering at University of Washington,  Seattle. He received his Ph.D.  in Aerospace Engineering from Purdue University. He was a senior technologist at JPL and a lecturer at Caltech. At JPL, He developed control algorithms for planetary landing, spacecraft formation flying, and asteroid and comet sample return missions. He developed the “flyaway” control algorithms in Mars Science Laboratory (MSL) mission, and the RCS algorithms for NASA SMAP mission. Dr. Acıkmese in- vented a novel real-time convex optimization based planetary landing guidance algorithm (G-FOLD) that was flight tested by JPL, which is a first demonstration of a real-time optimization algorithm for rocket guidance. He is a recipient of NSF CAREER Award, several NASA Achievement awards for his contributions to NASA missions and new technology development. He is an Associate Fellow of AIAA, a Senior Member of IEEE, and an associate editor of IEEE Control System Magazine and AIAA JGCD.

 

The Notices and Announcements section is provided as a service to the WSU community for sharing events such as lectures, trainings, and other highly transactional types of information related to the university experience. Information provided and opinions expressed may not reflect the understanding or opinion of WSU. Accuracy of the information presented is the responsibility of those who submitted it. The self-uploaded posts are reviewed for compliance with state statutes and ethics guidelines but are not edited for spelling, grammar, or clarity.

Next Story

Recent News

Voiland College names 2024 outstanding students

WSU Voiland College of Engineering and Architecture recognized outstanding students at its annual convocation ceremony on April 11.

Regents start search process for next WSU president

The Board of Regents will begin the search process for WSU’s 12th president this week. Applications for the Presidential Search Advisory Committee are now available.

Extension tackles climate awareness

WSU is weaving adaptation and mitigation into Extension programming as part of its long-held commitment to building resilient communities.