NASA grant to improve fluid flow in outer space

By Michelle Fredrickson, Voiland College of Engineering & Architecture intern

Mesarovic-webPULLMAN, Wash. – Future astronauts may boldly go farther than ever before, thanks to research at Washington State University recently funded by NASA to study fluids in space.

Liquids are used in many space station systems, such as fueling, heating and cooling. Oxygen for breathing is also stored as a liquid. As space missions get longer, researchers want to conserve energy when moving these fluids in order to make longer space missions possible.

Led by Sinisa Mesarovic, professor in the WSU School of Mechanical and Materials Engineering, the researchers will study capillary forces for moving liquids through narrow spaces. The goal is to develop a computer model and designs for improved liquid transport systems for future spacecraft.

Capillary forces move liquid via materials that either attract or repel it. For example, when a straw is put into a glass of water, the water level inside the straw is higher than the level in the glass.

“This is because the straw is made of material that likes contact with water,” Mesarovic said. “Capillary forces can hold a certain weight of water above the water lever in the glass.”

On Earth, capillary forces have to fight gravity. But in space, the only resistance is the viscosity of the liquid, which slows the flow but cannot stop it.

Mesarovic’s team will use the experiments conducted aboard the International Space Station during the past few years to quantify capillary flow in the absence of gravity. The researchers will develop a predictive computational model and, eventually, designs for better liquid transport systems.

 

Contacts:
Sinisa Mesarovic, WSU School of Mechanical and Materials Engineering, 509-335-7936, smesarovic@wsu.edu
Tina Hilding, Voiland College of Engineering and Architecture communications, 509-335-5095, thilding@wsu.edu

 

 

Next Story

Provost selection process ongoing

WSU expects to name its next provost before the end of April. President Kirk Schulz is actively considering two finalists, with feedback provided by the university community being a key factor in the decision.

Recent News

E-tongue can detect white wine spoilage before humans can

While bearing little physical resemblance to its namesake, the strand-like sensory probes of the “e-tongue” still outperformed human senses when detecting contaminated wine in a recent WSU-led study.

Employee Assistance Program hosts special sessions, April 17

Washington State Employee Assistance Program Director Jennifer Nguyen will lead two discussions tomorrow on the topics of change and personal wellbeing. Both presentations will be livestreamed.

The 2024 Seattle Experience highlights resiliency

The faculty-led alternative spring break program hosted by the College of Arts and Sciences helps students develop professional skills while networking with business leaders in the region.

Deadly bacteria show thirst for human blood

A WSU-led study has found the some of the world’s deadliest bacteria seek out and feed on human blood, a phenomenon researchers are calling “bacterial vampirism.”